China OEM Efficient Energy Transfer with High Torque Planetary Gearbox Design best automatic gearbox

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
047 064 090 110 142 200 255
Rated Output Torque T2n N.m 1 4 19 50 140 290 542 1050 1700
5 22 60 160 330 650 1200 2000
6 20 55 140 300 550 1100 1800
7 19 50 140 300 550 1100 1800
8 17 45 120 260 500 1000 1600
10 14 40 100 230 450 900 1500
2 16 22 60 160 330 650 1200 2000
20 22 60 160 330 650 1200 2000
25 22 60 160 330 650 1200 2000
28 19 50 140 300 550 1100 1800
35 22 60 160 330 650 1200 2000
40 22 60 160 330 650 1200 2000
50 22 60 160 330 650 1200 2000
70 19 50 140 300 550 1100 1800
100 14 40 100 230 450 900 1500
3 160 22 60 160 330 650 1200 2000
200 22 60 160 330 650 1200 2000
250 22 60 160 330 650 1200 2000
280 19 50 140 300 550 1100 1800
350 22 60 160 330 650 1200 2000
400 22 60 160 330 650 1200 2000
500 22 60 160 330 650 1200 2000
700 19 50 140 300 550 1100 1800
1000 14 40 100 230 450 900 1500
Maximum output torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque
Rated input speed N1n rpm 1,2,3 3~1000 5000 5000 3000 3000 3000 3000 2000
Maximum input speed N1b rpm 1,2,3 3~1000 10000 10000 6000 6000 6000 6000 4000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
High precision backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Precision backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9
Standard backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11
Torsional rigidity Nm/arcmin 1,2,3 3~1000 3 4.5 14 25 50 145 225
Allowable radial force F2rb2 N 1,2,3 3~1000 780 1550 3250 6700 9400 14500 30000
Allowable axial force F2ab2 N 1,2,3 3~1000 390 770 1630 3350 4700 7250 14000
Moment of inertia J1 kg.cm2 1 3~10 0.05 0.2 1.2 2 7.2 25 65
2 12~100 0.03 0.08 0.18 0.7 1.7 7.9 14
3 120~1000 0.03 0.03 0.01 0.04 0.09 0.21 0.82
service life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise level dB 1,2,3 3~1000 ≤56 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection class IP 1,2,3 3~1000 IP65
weights kg 1 3~10 0.6 1.3 3.9 8.7 16 31 48
2 12~100 0.8 1.8 4.6 10 20 39 62
3 120~1000 1.2 2.3 5.3 10.5 21 41 66

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China OEM Efficient Energy Transfer with High Torque Planetary Gearbox Design   best automatic gearbox	China OEM Efficient Energy Transfer with High Torque Planetary Gearbox Design   best automatic gearbox
editor by CX 2024-02-19